

AREVA Experience in Dismantling of the Primary Circuit

ENKO 2014

Hans-Otto Rohwer Project - Director AREVA Back End Germany

AREVA

11. ENKO, 23. - 24. April 2013 in Bratislava

Dismantling of Primary Circuit Components Content

- Introduction of AREVA
- Optimized Primary Circuit Dismantling
- Competencies
- Project References
 - Boiling Water Reactor (Wuergassen RPV and Internals)
 - Pressurized Water Reactor (Stade RPV Internals)
- Summary

Our operating organization

11. ENKO, 23. 24. April 2014 in Bratislava

Positioned as a leader in the back end of the cycle

Recycling More than 75% of the global treatment market

Center of Competencies for D&D of NPP in Germany

Cleanup

Active at all nuclear sites in France

Logistics

No. 1 in nuclear transportation worldwide and No. 1 in SNF dry storage

Introduction AREVA's Business Unit D&D

BU current footprint

Nuclear site reutilization projects worldwide

France, US (DOE), UK (Sellafield), Japan (Fukushima), Germany

1,400 employees, at 10 locations

- 400 MEUR revenue / year
- *D&D Competence Center at AREVA Germany*
 - Assistance during post-closure phase / deregulation
 - D&D engineering services and licensing support
 - Project and site management
 - Efficient decontamination (full-systems, components and equipment)
 - Radiological characterization and nuclear measurement
 - Disassembling, handling and packaging of highly activated components
 - Spent fuel and radioactive waste management

Superphenix Reactor D&D

- Engineering and licensing support
- Procurement, erection, commissioning and operations
- Core unloading, fuel handling and storage
- Sodium draining, removal, neutralization, conditioning and storage
- Decontamination
- Large components removal, segmentation and packaging

Processes and Lessons Learned

- Plants of the fuel cycle-

Challange <u>Marcoule</u>: Dismantling of a military reprocessing plant

- Lifetime 40 years
- 1,000 plants to clean up
- 30,000 tons waste, where of 2% high level waste

<u>Cadarache</u>: Dismantling of a MOX fabrication plant

- Lifetime 2007 to 2013
- > 400 glove boxes, ca. 40 casks
- 600,000 working hours

La Hague: Dismantling of a civil reprocessing plant

- Dismantling and waste recycling combined
- 32,000 m3 waste to clean up
- 6,000,000 working hours

<u>GB1</u>: Dismantling of an enrichment plant

- ca. 150-200 kilo tons, α-contaminated
- D&D start 2015

On-site management (operational safety, health physics, environment protection, Process organization...) as one of the essential challenges

ARF

Quantities of waste with the corresponding breakdown

Approx. 2% of the total waste of the controlled area has to be permanently disposed

11. ENKO, 23. 24. April 2014 in Bratislava

AREVA Decommissioning Approach for an optimized D&D Concept

► From "Hot" to "Cold" → fastest possible reduction of the radiological inventory

AREVA

Optimized Primary Circuit Dismantling Optimized Sequence

- From "Hot" to "Cold" → early removal of radiological inventory
- Installation mobile operating systems → faster clearing possible
- Awarding of overall work packages → Optimization of interfaces and usage of synergie effects

Optimized Primary Circuit Dismantling Hot to Cold

- Dose rates on-site for subsequent lots reduced significantly
- Potential for radioactive release reduced significantly
- Early back fitting of mobile operating systems possible
 - Power supply with less stringent requirements
 - Aerosol monitoring / ventilation simplified significantly
 - Fire protection measures reduced and adapted to the dismantling activities
 - Waste water treatment simplified
- Supervisory procedure simplified
- Use of industry standards (instead of KTA-rules possible)

Nearly 100% of the radiological inventory removed early. Significant simplification of further dismantling steps.

Note: Equivalent effort for licensing, planning and engineering before execution.

Time for Dismantling

AREVA

Savings of overall costs by reduced time line & riskless phase out

Competencies in Fuel Handling

As a lead manufacturer familiar with all requirements of

a safe handling and storage

- Analysis of fuel rod integrity under given storage conditions
- Studies and investigations about the fuel element characteristics under long term storage conditions

Design, manufacturing and operation of facilities for the

storage and treatment of spent fuel elements

- Casks for transport and dry storage (TN24E)
- Modular Dry Storage (NUHOMS)
- Compact storage frame, Absorber Cartridge
- Wet storage with passive cooling and protection against external effects

Service of fuel elements

- Fuel element inspection and repair
- Encapsulation of defect fuel elements

Conditioning of used core internals

- Neutron source
- Control rods, Instrumentation lance, Fuel element- components
- 11. ENKO, 23. 24. April 2014 in Bratislava

Alle Rechte vorbehalten

Rottom end roug

Capsule tube

Competencies Core Waste Processing in Spent Fuel Pool

- Cutting, Processing & Packing
 - Control assembly
 - Fuel element channel
 - Control rod guide tube
 - 🔶 T-bolt
 - Core instrumentation detector with yoke and shaft
 - 🔶 Drive rod
 - + Filter etc.

Competencies Full System Decontamination

Benefits

- Reduction of personnel radiation exposure due to dose rate reduction
- Flexibility of D&D concept
- Facilitation of dismantling activities
- Reduction of overall radwaste volume during decommissioning

Recommendation to perform the FSD directly after shutdown

- All plant systems are fully operational
- Personnel with plant experience is on site
- Earlier benefits from dose reduction, leading to lower overall accumulated dose during Post operation and D&D

Alle Rechte vorbehalten

ARFVA

Competencies Getting the Radiological Status

- Keyfactor for the Waste-Minimising:
 - Detailed knowledge about the radiological configuration of the components
- Combination of calculation and sampling
 - 3D-Activation-Calculation (specific activity and resulting dose rate...
 - Additional sampling for verification
- The aim is an as much as possible realistic judgement of the technical and radiological required measures
 - Avoidance of conservative considerations
 - Optimization of the waste packing and conditioning concept by minimizing the need of waste drums
 - Reducing the total dose rate (ALARA) of involved workers
 - More precise documentation for disposal application

Beispiel eines 3D-Aktivierungsmodells (RDB und Bioschild) Quelle: DSR

Competencies Component Dismantling

- Studies, Concept development, Engineering, Licensing
- Dismantling & Replacement of Primary Circuit Components (NSSS)
 - Reactor Pressure Vessel (RPV)
 - Reactor Internals
 - Primary pipes, Pressurizer, Pumps, Steam Generator
 - Core Waste Processing (cutting & packing)
 - Equipment Design & Manufacturing (tools, machinery, water purification...)

Over 30 years experience in Replacement & Dismantling of Primary Circuit Components (NSSS)

Alle Rechte vorbehalten

Competencies Cutting Techniques and Equipment

Cold cutting processes

- Water jet cutting
- Sawing
- Milling
- Shearing
- Nibbling
- Unscrewing
- Grinding
- Drilling
- Wire sawing (rope, diamond)

Specific Equipments

- Water Treatment System (mechanical filter / hydro cyclone)
- Cleaning Systems (high pressure water cleaning)
- Lifting devices, gripper, shears, press,

Thermal cutting processes

- Plasma cutting
- Torch cutting
- Powder flame cutting
- Laser cutting
- Oxygen lance
- Petrogen cutting (gasoline-oxygen)
- Electric discharge machining (EDM)
- Contact arc metal cutting (CAMC)

Alle Rechte vorbehalten

Competencies Waste Treatment Systems

- Waste water and waste treatment systems
 - Waste treatment concepts and studies
 - Supply of waste water and radwaste treatment systems
- Design of waste water treatment systems
 - Evaporation systems
 - Centrifugation systems
 - Filtration
- Design of liquid waste treatment systems
 - Drying systems
 - Cementation systems
 - Bituminization systems
- Equipment for solid waste treatment
 - Sorting boxes
 - In-drum compactors
 - Supercompactors
 - Balers
 - Shredders
 - Drying boxes

Drum Filling Station

Turn-key projects for:

- Hot Laundry
- Hot Workshops
- Decontamination Workshops
- HVAC systems

Project Reference Core Waste Processing in Spent Fuel Pool

Dismantling of Control Rods NPP Isar 1

AREVA

Project Reference: Wuergassen NPP (BWR) Dismantling of RPV Internals and RPV

Würgassen NPP (BWR, 670 MWe)

Project Reference: Wuergassen NPP (BWR) Dismantling of RPV Internals

Jet Pumps & CRGT

Steam Dryer (Scope NIS: wire sawing after concrete filling)

Project	Year
Contract for dismantling control rod guide tubes and jet pumps	11/2003
Successfully completed	12/2004
Contract for dismantling T-bolts of steam-water- separator	05/2004
Successfully completed	01/2005
Contract for dismantling the cyclones of steam-water- separator	10/2005
Successfully completed	11/2006
Contract for dismantling the remaining internals (core cover, upper core grid, lower core grid, core shroud, feed water sparger, jet pumps, etc)	04/2006
Successfully completed (TP91 phase 1 and 2)	11/2008
Contract for dismantling the reactor pressure vessel (cylindrical part)	02/2008
Successfully completed	02/2010

Project Reference: Wuergassen NPP (BWR) CRGT and Jet Pumps

Cut through a jet pump using a band saw

Loaded primary cask

- On-site activities:
 09 12/2004
- Cut mass: 22 tons
- 110 CRGT (L=410 cm, D=27 cm)
- 18 jet pumps (L=320 cm, D=19 cm)

Nibbling of cut tubes

- Remote handled cutting under water in spent fuel pool
- Pulling-out and pre-cutting by band saw
- Final cutting by nibbling and packing into primary cask
- Drying of casks and inserting into 200ldrums

Project Reference: Wuergassen NPP (BWR) T-Bolts

40 T-bolts

- Total mass: 8 tons
- Separating from steam-water-separator
- Cutting of T-bolts using a band saw
- Packing of cut parts into primary cask and after drying into 200I-drums

Project Reference: Wuergassen NPP (BWR) Steam-Water-Separator

- Order receipt: 10/2005
- Engineering & procurement: 7 months
- Cutting & packing: 7 months
- UW-cutting in set down pool
- Core cover was dismantled later on
- Cutting of web plates via shearing
- Separating of cyclones via compass saw
- Cutting of median support ring via pot saw
- Separating of stand pipes via compass saw
- Cut mass: 35 tons (120 cyclones)
- Compacting of cut parts using an UW-compactor, packing into 200I drums

Project Reference: Wuergassen NPP (BWR) Remaining Internals

- Order receipt: 04/2006
- Finished: 12/2008
- Total mass: ~ 55 tons
- On-site-dismantling in 2 phases:
 - Phase 1: 12/2006 10/2007
 - Phase 2: 03/2008 12/2008

Rotatable working platform installed on RPV flange and post segmentation platform

Project Reference: Wuergassen NPP (BWR) Remaining Internals

Phase 1: Mobile internals in set down pool

- Core cover (remaining from steam-water-separator)
- Upper core grid
- Lower core grid
- Core Instrumentation
- → Packing into primary casks & 200l drums

Project Reference: Wuergassen NPP (BWR) Cutting Activities Phase 1

Cutting of core cover

- Water Abrasive Suspension Slicing WASS (cutting speed ca. 50 mm/min)
- Compass saw
- Hydraulic shear

Project Reference: Wuergassen NPP (BWR) Cutting Activities Phase 1

Packing of calotte segments

Cutting of spray heads

Cutting of core spray tube

Project Reference: Wuergassen NPP (BWR) Remaining Internals

Phase 2: Rigidly installed internals in RPV

Core Shroud

 Components close to RPV-wall e.g. sample magazines, standpipes of feed water sparger and jet pumps

→ Packing into primary casks & 200I drums

Final cutting of standpipe

First cut on core shroud

Cutting of core shroud in RPV using a band saw

Project Reference: Wuergassen NPP (BWR) Cutting and Packing Strategy

Dicnocal

	Disposal				
Area of steam drver	Decontamination and				
steam-water-sep.	melting	Total:			
contaminated		270 cut pieces			
		Thereof:			
Area of		56 flange pieces			
	Packing and conditioning into Konrad Containers	173 wall pieces			
ruel		23 nozzle pieces			
contaminated & activated	(KC)	18 pieces of core shroud support ring			

Complex cutting due to various nozzles. Adapted grippers with force and form lock.

Project Reference: Wuergassen NPP (BWR) Dismantling of RPV

RPV data

- Total weight of cylindrical part: 320 tons
- 🔶 Height: 15 m
- Cut segments: 252 pcs.
- Packing for final storage (29 KC)

Applied cutting techniques

- Water Abrasive Suspension Slicing
 - Water pressure: 2000 bar
 - Material thickness: 137 mm
 - Cutting speed: 20 mm/min
- Band saw (for RPV flange)
 - Cutting height: 1100 mm
 - Flange thickness: 425 mm

Requirement: in-situ cutting on air

Project Reference: Wuergassen NPP (BWR) Overview on installed Infrastructure

Project Reference: Wuergassen NPP (BWR) Shielding Plate

Total mass: 32 tons

- Attached to rotating crane above RPV
- Lowered down following the dismantling progress

Reduction of collective dose

Project Reference: Wuergassen NPP (BWR) Rotating Crane

11. ENKO, 23. 24. April 2014 in Bratislava

Project Reference: Wuergassen NPP (BWR) Cutting Technique

RPV flange

- Vertical cuts: band saw
 - Wall thickness: 450 mm
 - Avoidance of aerosols
- Horizontal cuts: WASS
 - Avoidance of aerosols
 - Wall thickness: 140 mm
 - No jamming

RPV cylindrical part

- Vertical and horizontal cuts: WASS
 - Avoidance of aerosols
 - Limited clearance to insulation: 200 mm
 - No thermal impact to insulation

Alle Rechte vorbehalten

Project Reference: Wuergassen NPP (BWR) On-site Impressions

Vertical segmentation of RPV flange

Positioning of RPV segment for transport to container loading station

Gripper removing RPV segment

Packing of RPV segment into KONRAD container

Project Reference: Wuergassen NPP (BWR) Cutting and Packing Strategy

Correlation of cutting and packing plan for reducing the number of containers.

AREVA

Project Reference: Wuergassen NPP (BWR) Packing and Conditioning

- Rail system for up to 5 Konrad containers (KC)
- Cranes for handling of cut pieces, KC and concreting device
- Weighing system for KC
- Shielding plates for KC
- Camera surveillance
- Covering station

AREVA NP

Project Reference: Wuergassen NPP (BWR) Water Purification

- Collecting the water-abrasive-kerf mixture
- Deposition of abrasive and kerf material using the principle of a hydro cyclone

Deposition directly into 200I drums – no additional handling necessary.

Project Reference: Wuergassen NPP (BWR) Schedule

	2008			2009			2010	
	Q2/08	Q3/08	Q4/08	Q1/09	Q2/09	Q3/09	Q4/09	Q1/10
Project duration	24 months							
								April 2010
Engineering phase	12 months							
Installation of cutting	utting			6 months				
equipment								
Dismantling of RPV				13 months				

Project Reference: Stade NPP (PWR) Dismantling of RPV Internals

- Dismantling conditioning and packing for final storage of RPV Internals (2007-2009)
 - Remote controlled underwater segmentation and packing
 - Total mass of 85 tons
 - 158 shielded casks and 10 containers
 - Upper Core Internals
 - Lower Core Internals with Core Barrel
 - Core Support Structure

37 shielded casks were saved.Project finished successfully in time.Dose application limited as specified.No accident at work.

Project Reference: Stade NPP (PWR) Pool Layout

AREVA

Project Reference: Stade NPP (PWR) On-site Impressions

Project Reference: Stade NPP (PWR) On-site Impressions

Crosscut Saw

11. ENKO, 23. 24. April 2014 in Bratislava

Project Reference: Stade NPP (PWR) Schedule

	2008				2009				
	2007	Q1/08	Q2/08	Q3/08	Q4/08	Q1/09	Q2/09	Q3/09	
Project duration	32 months					\diamond			
								Aug. 2009	
Engineering phase		21 m	onths						
Installation of cutting				7 months					
equipment									
Dismantling in reactor				11 months					
Pool									
cleaning of cutting area			13 months						

Würgassen (BWR) and Stade (PWR)

- Dismantling, conditioning and packing for final storage of RPV as well as RPV Internals
 - Stade RPV Internals (2007-2009)
 - Remote controlled underwater segmentation and packing
 - Total mass of 85 tons
 - 158 MOSAIK and 10 KONRAD containers
 - 37 MOSAIK containers were saved due to optimization of packing strategy
 - Würgassen RPV + Internals
 - Dismantling and packing of Internals (2003-2009)
 - Total mass of 160 tons
 - Dismantling and packing of RPV (2008-2010)
 - Total mass of 320 tons

10% to 20% of waste containers were saved - Projects were finished successfully in time - Collective dose limited as specified - No accident at work

Optimized Primary Circuit Dismantling Summary

D&D projects are driven by costs, to implement an optimization process from the very beginning is key

- Optimized strategy and sequencing of the dismantling (hot to cold) will provide serious economical savings
- Larger dismantling packages will reduce interfaces and ease the coordination efforts on site
- Early usage of mobile systems will ease the large-scale release for dismantling
- Social transition has to be addressed with priority and to be planned at an early phase in the D&D planning
- Concept, Planning & Project Management will influence the success of the project much more than the used technique

The AREVA Competence Centre for Dismantling provides a solid base for the successful execution of your decommissioning project.

